3.3019 \(\int \frac {1}{x^3 (a+b (c x^n)^{\frac {1}{n}})^2} \, dx\)

Optimal. Leaf size=125 \[ \frac {3 b^2 \log (x) \left (c x^n\right )^{2/n}}{a^4 x^2}-\frac {3 b^2 \left (c x^n\right )^{2/n} \log \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )}{a^4 x^2}+\frac {b^2 \left (c x^n\right )^{2/n}}{a^3 x^2 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )}+\frac {2 b \left (c x^n\right )^{\frac {1}{n}}}{a^3 x^2}-\frac {1}{2 a^2 x^2} \]

[Out]

-1/2/a^2/x^2+2*b*(c*x^n)^(1/n)/a^3/x^2+b^2*(c*x^n)^(2/n)/a^3/x^2/(a+b*(c*x^n)^(1/n))+3*b^2*(c*x^n)^(2/n)*ln(x)
/a^4/x^2-3*b^2*(c*x^n)^(2/n)*ln(a+b*(c*x^n)^(1/n))/a^4/x^2

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {368, 44} \[ \frac {b^2 \left (c x^n\right )^{2/n}}{a^3 x^2 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )}+\frac {3 b^2 \log (x) \left (c x^n\right )^{2/n}}{a^4 x^2}-\frac {3 b^2 \left (c x^n\right )^{2/n} \log \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )}{a^4 x^2}+\frac {2 b \left (c x^n\right )^{\frac {1}{n}}}{a^3 x^2}-\frac {1}{2 a^2 x^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(a + b*(c*x^n)^n^(-1))^2),x]

[Out]

-1/(2*a^2*x^2) + (2*b*(c*x^n)^n^(-1))/(a^3*x^2) + (b^2*(c*x^n)^(2/n))/(a^3*x^2*(a + b*(c*x^n)^n^(-1))) + (3*b^
2*(c*x^n)^(2/n)*Log[x])/(a^4*x^2) - (3*b^2*(c*x^n)^(2/n)*Log[a + b*(c*x^n)^n^(-1)])/(a^4*x^2)

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 368

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*((c_.)*(x_)^(q_))^(n_))^(p_.), x_Symbol] :> Dist[(d*x)^(m + 1)/(d*((c*x^q
)^(1/q))^(m + 1)), Subst[Int[x^m*(a + b*x^(n*q))^p, x], x, (c*x^q)^(1/q)], x] /; FreeQ[{a, b, c, d, m, n, p, q
}, x] && IntegerQ[n*q] && NeQ[x, (c*x^q)^(1/q)]

Rubi steps

\begin {align*} \int \frac {1}{x^3 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )^2} \, dx &=\frac {\left (c x^n\right )^{2/n} \operatorname {Subst}\left (\int \frac {1}{x^3 (a+b x)^2} \, dx,x,\left (c x^n\right )^{\frac {1}{n}}\right )}{x^2}\\ &=\frac {\left (c x^n\right )^{2/n} \operatorname {Subst}\left (\int \left (\frac {1}{a^2 x^3}-\frac {2 b}{a^3 x^2}+\frac {3 b^2}{a^4 x}-\frac {b^3}{a^3 (a+b x)^2}-\frac {3 b^3}{a^4 (a+b x)}\right ) \, dx,x,\left (c x^n\right )^{\frac {1}{n}}\right )}{x^2}\\ &=-\frac {1}{2 a^2 x^2}+\frac {2 b \left (c x^n\right )^{\frac {1}{n}}}{a^3 x^2}+\frac {b^2 \left (c x^n\right )^{2/n}}{a^3 x^2 \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )}+\frac {3 b^2 \left (c x^n\right )^{2/n} \log (x)}{a^4 x^2}-\frac {3 b^2 \left (c x^n\right )^{2/n} \log \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )}{a^4 x^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 99, normalized size = 0.79 \[ \frac {\left (c x^n\right )^{2/n} \left (a \left (\frac {2 b^2}{a+b \left (c x^n\right )^{\frac {1}{n}}}-a \left (c x^n\right )^{-2/n}+4 b \left (c x^n\right )^{-1/n}\right )-6 b^2 \log \left (a+b \left (c x^n\right )^{\frac {1}{n}}\right )+6 b^2 \log (x)\right )}{2 a^4 x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(a + b*(c*x^n)^n^(-1))^2),x]

[Out]

((c*x^n)^(2/n)*(a*(-(a/(c*x^n)^(2/n)) + (4*b)/(c*x^n)^n^(-1) + (2*b^2)/(a + b*(c*x^n)^n^(-1))) + 6*b^2*Log[x]
- 6*b^2*Log[a + b*(c*x^n)^n^(-1)]))/(2*a^4*x^2)

________________________________________________________________________________________

fricas [A]  time = 0.92, size = 131, normalized size = 1.05 \[ \frac {6 \, b^{3} c^{\frac {3}{n}} x^{3} \log \relax (x) + 3 \, a^{2} b c^{\left (\frac {1}{n}\right )} x - a^{3} + 6 \, {\left (a b^{2} x^{2} \log \relax (x) + a b^{2} x^{2}\right )} c^{\frac {2}{n}} - 6 \, {\left (b^{3} c^{\frac {3}{n}} x^{3} + a b^{2} c^{\frac {2}{n}} x^{2}\right )} \log \left (b c^{\left (\frac {1}{n}\right )} x + a\right )}{2 \, {\left (a^{4} b c^{\left (\frac {1}{n}\right )} x^{3} + a^{5} x^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+b*(c*x^n)^(1/n))^2,x, algorithm="fricas")

[Out]

1/2*(6*b^3*c^(3/n)*x^3*log(x) + 3*a^2*b*c^(1/n)*x - a^3 + 6*(a*b^2*x^2*log(x) + a*b^2*x^2)*c^(2/n) - 6*(b^3*c^
(3/n)*x^3 + a*b^2*c^(2/n)*x^2)*log(b*c^(1/n)*x + a))/(a^4*b*c^(1/n)*x^3 + a^5*x^2)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (\left (c x^{n}\right )^{\left (\frac {1}{n}\right )} b + a\right )}^{2} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+b*(c*x^n)^(1/n))^2,x, algorithm="giac")

[Out]

integrate(1/(((c*x^n)^(1/n)*b + a)^2*x^3), x)

________________________________________________________________________________________

maple [C]  time = 0.16, size = 379, normalized size = 3.03 \[ \frac {3 b^{2} c^{\frac {2}{n}} \left (x^{n}\right )^{\frac {2}{n}} {\mathrm e}^{\frac {i \pi \left (\mathrm {csgn}\left (i c \right )-\mathrm {csgn}\left (i c \,x^{n}\right )\right ) \left (-\mathrm {csgn}\left (i x^{n}\right )+\mathrm {csgn}\left (i c \,x^{n}\right )\right ) \mathrm {csgn}\left (i c \,x^{n}\right )}{n}} \ln \relax (x )}{a^{4} x^{2}}-\frac {3 b^{2} c^{\frac {2}{n}} \left (x^{n}\right )^{\frac {2}{n}} {\mathrm e}^{\frac {i \pi \left (\mathrm {csgn}\left (i c \right )-\mathrm {csgn}\left (i c \,x^{n}\right )\right ) \left (-\mathrm {csgn}\left (i x^{n}\right )+\mathrm {csgn}\left (i c \,x^{n}\right )\right ) \mathrm {csgn}\left (i c \,x^{n}\right )}{n}} \ln \left (b \,c^{\frac {1}{n}} \left (x^{n}\right )^{\frac {1}{n}} {\mathrm e}^{\frac {i \pi \left (\mathrm {csgn}\left (i c \right )-\mathrm {csgn}\left (i c \,x^{n}\right )\right ) \left (-\mathrm {csgn}\left (i x^{n}\right )+\mathrm {csgn}\left (i c \,x^{n}\right )\right ) \mathrm {csgn}\left (i c \,x^{n}\right )}{2 n}}+a \right )}{a^{4} x^{2}}+\frac {3 b \,c^{\frac {1}{n}} \left (x^{n}\right )^{\frac {1}{n}} {\mathrm e}^{\frac {i \pi \left (\mathrm {csgn}\left (i c \right )-\mathrm {csgn}\left (i c \,x^{n}\right )\right ) \left (-\mathrm {csgn}\left (i x^{n}\right )+\mathrm {csgn}\left (i c \,x^{n}\right )\right ) \mathrm {csgn}\left (i c \,x^{n}\right )}{2 n}}}{a^{3} x^{2}}+\frac {1}{\left (b \,c^{\frac {1}{n}} \left (x^{n}\right )^{\frac {1}{n}} {\mathrm e}^{\frac {i \pi \left (\mathrm {csgn}\left (i c \right )-\mathrm {csgn}\left (i c \,x^{n}\right )\right ) \left (-\mathrm {csgn}\left (i x^{n}\right )+\mathrm {csgn}\left (i c \,x^{n}\right )\right ) \mathrm {csgn}\left (i c \,x^{n}\right )}{2 n}}+a \right ) a \,x^{2}}-\frac {3}{2 a^{2} x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(b*(c*x^n)^(1/n)+a)^2,x)

[Out]

1/a/x^2/(b*c^(1/n)*(x^n)^(1/n)*exp(1/2*I*Pi*(csgn(I*c)-csgn(I*c*x^n))*(-csgn(I*x^n)+csgn(I*c*x^n))/n*csgn(I*c*
x^n))+a)-3/a^4*ln(b*c^(1/n)*(x^n)^(1/n)*exp(1/2*I*Pi*(csgn(I*c)-csgn(I*c*x^n))*(-csgn(I*x^n)+csgn(I*c*x^n))/n*
csgn(I*c*x^n))+a)*b^2/x^2*((x^n)^(1/n))^2*(c^(1/n))^2*exp(I*Pi*(csgn(I*c)-csgn(I*c*x^n))*(-csgn(I*x^n)+csgn(I*
c*x^n))/n*csgn(I*c*x^n))-3/2/a^2/x^2+3/a^3*b/x^2*c^(1/n)*(x^n)^(1/n)*exp(1/2*I*Pi*(csgn(I*c)-csgn(I*c*x^n))*(-
csgn(I*x^n)+csgn(I*c*x^n))/n*csgn(I*c*x^n))+3/a^4*b^2/x^2*c^(2/n)*(x^n)^(2/n)*exp(I*Pi*(csgn(I*c)-csgn(I*c*x^n
))*(-csgn(I*x^n)+csgn(I*c*x^n))/n*csgn(I*c*x^n))*ln(x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{a b c^{\left (\frac {1}{n}\right )} x^{2} {\left (x^{n}\right )}^{\left (\frac {1}{n}\right )} + a^{2} x^{2}} + 3 \, \int \frac {1}{a b c^{\left (\frac {1}{n}\right )} x^{3} {\left (x^{n}\right )}^{\left (\frac {1}{n}\right )} + a^{2} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+b*(c*x^n)^(1/n))^2,x, algorithm="maxima")

[Out]

1/(a*b*c^(1/n)*x^2*(x^n)^(1/n) + a^2*x^2) + 3*integrate(1/(a*b*c^(1/n)*x^3*(x^n)^(1/n) + a^2*x^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{x^3\,{\left (a+b\,{\left (c\,x^n\right )}^{1/n}\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(a + b*(c*x^n)^(1/n))^2),x)

[Out]

int(1/(x^3*(a + b*(c*x^n)^(1/n))^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{3} \left (a + b \left (c x^{n}\right )^{\frac {1}{n}}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(a+b*(c*x**n)**(1/n))**2,x)

[Out]

Integral(1/(x**3*(a + b*(c*x**n)**(1/n))**2), x)

________________________________________________________________________________________